8.3 Exploring Special Right Triangles (45-45-90)

Given the isosceles right triangle to the right…

1. What is the measure of each angle? Explain

\[180^\circ - 90^\circ = 90^\circ \]

\[\frac{90}{2} = 45^\circ \]

\[45^\circ - 45^\circ - 90^\circ \]

2a. If the length of each leg is 1 unit, find the length of the hypotenuse. Leave your answer in simplified rational form.

\[l^2 + l^2 = h^2 \]

\[l + l = h^2 \]

\[\sqrt{2} = h \]

\[\sqrt{2} = h \]

2b. What are the side-length ratios of leg : leg : hypotenuse?

\[1 : 1 : \sqrt{2} \]

3. If the length of each leg is 2 unit, find the length of the hypotenuse. Leave your answer in simplified rational form.

\[2^2 + 2^2 = h^2 \]

\[4 + 4 = h^2 \]

\[\sqrt{8} = h^2 \]

\[2\sqrt{2} = h \]

\[2\sqrt{2} = h \]
Theorem 8.8 45°-45°-90° Triangle Theorem

In a 45°-45°-90° triangle, the legs ℓ are congruent and the length of the hypotenuse h is $\sqrt{2}$ times the length of a leg.

Symbols In a 45°-45°-90° triangle, $\ell = \ell$ and $h = \ell \sqrt{2}$.

Example 1A: Find x

\[x = \ell \sqrt{2} \]
\[\ell = 9 \]
\[x = 9 \sqrt{2} \]

Example 1B: Find x

\[x = \ell \sqrt{2} \]
\[\ell = 6 \sqrt{2} \]
\[x = 6 \sqrt{2} \sqrt{2} \]
\[x = 12 \]

Guided Practice 1A: Find x

\[x = \ell \sqrt{2} \]
\[\ell = 7 \]
\[x = 7 \sqrt{2} \]

Guided Practice 1B: Find x

\[x = \ell \sqrt{2} \]
\[\ell = 8 \sqrt{2} \]
\[x = 8 \sqrt{2} \sqrt{2} \]
\[x = 16 \]

Example 2: Find a

\[\ell \sqrt{2} = 8 \]
\[\sqrt{2} \sqrt{2} \]
\[\ell = 4 \sqrt{2} \]
\[a = \ell \]
\[a = 4 \sqrt{2} \]

Guided Practice 2: Find b

\[\ell \sqrt{2} = 6 \]
\[\ell = 3 \sqrt{2} \]